Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell Rep Med ; 4(6): 101088, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2328298

RESUMEN

The coronavirus (CoV) family includes several viruses infecting humans, highlighting the importance of exploring pan-CoV vaccine strategies to provide broad adaptive immune protection. We analyze T cell reactivity against representative Alpha (NL63) and Beta (OC43) common cold CoVs (CCCs) in pre-pandemic samples. S, N, M, and nsp3 antigens are immunodominant, as shown for severe acute respiratory syndrome 2 (SARS2), while nsp2 and nsp12 are Alpha or Beta specific. We further identify 78 OC43- and 87 NL63-specific epitopes, and, for a subset of those, we assess the T cell capability to cross-recognize sequences from representative viruses belonging to AlphaCoV, sarbecoCoV, and Beta-non-sarbecoCoV groups. We find T cell cross-reactivity within the Alpha and Beta groups, in 89% of the instances associated with sequence conservation >67%. However, despite conservation, limited cross-reactivity is observed for sarbecoCoV, indicating that previous CoV exposure is a contributing factor in determining cross-reactivity. Overall, these results provide critical insights in developing future pan-CoV vaccines.


Asunto(s)
COVID-19 , Resfriado Común , Humanos , Linfocitos T , SARS-CoV-2 , Reacciones Cruzadas
2.
J Allergy Clin Immunol Pract ; 11(7): 2008-2022, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-2319580

RESUMEN

Immediate hypersensitivity reactions to vaccines, the most severe of which is anaphylaxis, are uncommon events occurring in fewer than 1 in a million doses administered. These reactions are infrequently immunoglobulin E-mediated. Because they are unlikely to recur, a reaction to a single dose of a vaccine is rarely a contraindication to redosing. This narrative review article contextualizes the recent knowledge we have gained from the coronavirus 2019 (COVID-19) pandemic rollout of the new mRNA platform with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines within the much broader context of what is known about immediate reactions to other vaccinations of routine and global importance. We focus on what is known about evidence-based approaches to diagnosis and management and what is new in our understanding of mechanisms of immediate vaccine reactions. Specifically, we review the epidemiology of immediate hypersensitivity vaccine reactions, differential diagnosis for immune-mediated and nonimmune reaction clinical phenotypes, including how to recognize immunization stress-related responses. In addition, we highlight what is known about mechanisms and review the rare but important contribution of excipient allergies and specifically when to consider testing for them as well as other key features that contribute to safe evaluation and management.


Asunto(s)
Anafilaxia , COVID-19 , Hipersensibilidad Inmediata , Humanos , Anafilaxia/epidemiología , Anafilaxia/etiología , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Vacunación/efectos adversos
3.
J Allergy Clin Immunol Pract ; 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: covidwho-2282663

RESUMEN

BACKGROUND: Although immediate potentially allergic reactions have been reported after dose 1 of mRNA coronavirus disease 2019 (COVID-19) vaccines, comprehensively defined subtypes have not been clearly distinguished. OBJECTIVE: To define distinct clinical phenotypes of immediate reactions after dose 1 of mRNA COVID-19 vaccination, and to assess the relation of clinical phenotype to mRNA COVID-19 vaccine second dose tolerance. METHODS: This retrospective study included patients with 1 or more potentially allergic symptoms or signs within 4 hours of receiving dose 1 of an mRNA COVID-19 vaccine and assessed by allergy/immunology specialists from 5 U.S. academic medical centers (January-June 2021). We used latent class analysis-an unbiased, machine-learning modeling method-to define novel clinical phenotypes. We assessed demographic, clinical, and reaction characteristics associated with phenotype membership. Using log-binomial regression, we assessed the relation between phenotype membership and second dose tolerance, defined as either no symptoms or mild, self-limited symptoms resolving with antihistamines alone. A sensitivity analysis considered second dose tolerance as objective signs only. RESULTS: We identified 265 patients with dose-1 immediate reactions with 3 phenotype clusters: (1) Limited or Predominantly Cutaneous, (2) Sensory, and (3) Systemic. A total of 223 patients (84%) received a second dose and 200 (90%) tolerated their second dose. Sensory cluster (all patients had the symptom of numbness or tingling) was associated with a higher likelihood of second dose intolerance, but this finding did not persist when accounting for objective signs. CONCLUSIONS: Three novel clinical phenotypes of immediate-onset reactions after dose 1 of mRNA COVID-19 vaccines were identified using latent class analysis: (1) Limited or Predominantly Cutaneous, (2) Sensory, and (3) Systemic. Whereas these clinical phenotypes may indicate differential mechanistic etiologies or associations with subsequent dose tolerance, most individuals proceeding to their second dose tolerated it.

5.
J Virol ; 97(2): e0147822, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: covidwho-2193452

RESUMEN

Little is known about the relationships between symptomatic early severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load and upper airway mucosal gene expression and immune response. To examine the association of symptomatic SARS-CoV-2 early viral load with upper airway mucosal gene expression, we profiled the host mucosal transcriptome from nasopharyngeal swab samples from 68 adults with symptomatic, mild-to-moderate coronavirus disease 19 (COVID-19). We measured SARS-CoV-2 viral load using reverse transcription-quantitative PCR (RT-qPCR). We then examined the association of SARS-CoV-2 viral load with upper airway mucosal immune response. We detected SARS-CoV-2 in all samples and recovered >80% of the genome from 95% of the samples from symptomatic COVID-19 adults. The respiratory virome was dominated by SARS-CoV-2, with limited codetection of other respiratory viruses, with the human Rhinovirus C being identified in 4 (6%) samples. This limited codetection of other respiratory viral pathogens may be due to the implementation of public health measures, like social distancing and masking practices. We observed a significant positive correlation between SARS-CoV-2 viral load and interferon signaling (OAS2, OAS3, IFIT1, UPS18, ISG15, ISG20, IFITM1, and OASL), chemokine signaling (CXCL10 and CXCL11), and adaptive immune system (IFITM1, CD300E, and SIGLEC1) genes in symptomatic, mild-to-moderate COVID-19 adults, when adjusting for age, sex, and race. Interestingly, the expression levels of most of these genes plateaued at a cycle threshold (CT) value of ~25. Overall, our data show that the early nasal mucosal immune response to SARS-CoV-2 infection is viral load dependent, potentially modifying COVID-19 outcomes. IMPORTANCE Several prior studies have shown that SARS-CoV-2 viral load can predict the likelihood of disease spread and severity. A higher detectable SARS-CoV-2 plasma viral load was associated with worse respiratory disease severity. However, the relationship between SARS-CoV-2 viral load, airway mucosal gene expression, and immune response remains elusive. We profiled the nasal mucosal transcriptome from nasal samples collected from adults infected with SARS-CoV-2 during spring 2020 with mild-to-moderate symptoms using a comprehensive metatranscriptomics method. We observed a positive correlation between SARS-CoV-2 viral load, interferon signaling, chemokine signaling, and adaptive immune system in adults with COVID-19. Our data suggest that early nasal mucosal immune response to SARS-CoV-2 infection was viral load dependent and may modify COVID-19 outcomes.


Asunto(s)
COVID-19 , Expresión Génica , Mucosa Respiratoria , SARS-CoV-2 , Carga Viral , Adulto , Humanos , Quimiocinas/fisiología , COVID-19/inmunología , COVID-19/virología , Expresión Génica/inmunología , Inmunidad Mucosa/inmunología , Interferones/fisiología , SARS-CoV-2/genética , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología
8.
J Allergy Clin Immunol Pract ; 10(9): 2254-2266, 2022 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1873112

RESUMEN

Just over 1 year following rollout of the first vaccines for coronavirus disease 2019, 572 million doses have been administered in the United States. Compared with the number of vaccines administered, adverse effects such as anaphylaxis have been rare, and seemingly, the more serious the effect, the rarer the occurrence. Despite these adverse effects, there are few, if any, true contraindications to coronavirus disease 2019 vaccination and most individuals recover without further sequelae. This review provides guidance for the allergist/immunologist regarding appropriate next steps based on patient's known allergy history or adverse reaction after receipt of coronavirus disease 2019 vaccine to assist in safe global immunization.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Humanos , SARS-CoV-2 , Estados Unidos/epidemiología , Vacunación/efectos adversos , Vacunas/efectos adversos
10.
Nat Nanotechnol ; 17(4): 337-346, 2022 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1783988

RESUMEN

After over a billion of vaccinations with messenger RNA-lipid nanoparticle (mRNA-LNP) based SARS-CoV-2 vaccines, anaphylaxis and other manifestations of hypersensitivity can be considered as very rare adverse events. Although current recommendations include avoiding a second dose in those with first-dose anaphylaxis, the underlying mechanisms are unknown; therefore, the risk of a future reaction cannot be predicted. Given how important new mRNA constructs will be to address the emergence of new viral variants and viruses, there is an urgent need for clinical approaches that would allow a safe repeated immunization of high-risk individuals and for reliable predictive tools of adverse reactions to mRNA vaccines. In many aspects, anaphylaxis symptoms experienced by the affected vaccine recipients resemble those of infusion reactions to nanomedicines. Here we share lessons learned over a decade of nanomedicine research and discuss the current knowledge about several factors that individually or collectively contribute to infusion reactions to nanomedicines. We aim to use this knowledge to inform the SARS-CoV-2 lipid-nanoparticle-based mRNA vaccine field.


Asunto(s)
Anafilaxia , COVID-19 , Anafilaxia/etiología , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Humanos , Liposomas , Nanomedicina , Nanopartículas , ARN Mensajero/genética , SARS-CoV-2/genética , Vacunas Sintéticas , Vacunas de ARNm
11.
J Allergy Clin Immunol ; 150(1): 12-16, 2022 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1778236

RESUMEN

Anaphylaxis is a life-threatening condition and when associated with vaccination, leads to vaccine hesitancy. The concerns around vaccine-related anaphylaxis have become even more important during the coronavirus disease 2019 (COVID-19) pandemic where the COVID-19 vaccines remain one of our most important tools. Although rates of anaphylaxis to COVID-19 vaccines are not significantly different from those to other vaccines, Centers for Disease Control and Prevention guidance recommends avoidance of the same COVID-19 vaccine in individuals who had an allergic reaction or are allergic to a COVID-19 vaccine component. Fortunately, our understanding of COVID-19 vaccine allergic reactions has improved dramatically in the past year in large part due to important research efforts from individuals in the allergy community. Initially, researchers published algorithmic approaches using risk stratification and excipient skin testing. However, as our experience and knowledge improved with ongoing research, we have better data showing safety of repeat vaccination despite an initial reaction. We review our progress starting in December 2020 when the Food and Drug Administration approved the first COVID-19 vaccine in the United States through early 2022, highlighting our success in understanding COVID-19 vaccine reactions.


Asunto(s)
Anafilaxia , Vacunas contra la COVID-19 , Anafilaxia/inducido químicamente , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Humanos , Medición de Riesgo , Vacilación a la Vacunación
12.
Pediatr Blood Cancer ; 69(7): e29686, 2022 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1763274

RESUMEN

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an effective strategy to prevent serious coronavirus disease 2019 (COVID-19) and is important for oncology patients. mRNA-based COVID-19 vaccines are contraindicated in those with a history of severe or immediate allergy to any vaccine component, including polyethylene glycol (PEG)2000. Patients with acute lymphoblastic leukemia/lymphoma receive asparaginase conjugated to PEG5000 (PEG-ASNase) and those with PEG-ASNase-associated hypersensitivity may be unnecessarily excluded from receiving mRNA COVID-19 vaccines. We, therefore, surveyed oncologists on COVID-19 vaccine counseling practice and vaccination outcomes in COVID-19 vaccination-eligible patients and show safe receipt of mRNA vaccines despite PEG-ASNase hypersensitivity.


Asunto(s)
Asparaginasa , Vacunas contra la COVID-19 , COVID-19 , Hipersensibilidad a las Drogas , Polietilenglicoles , Asparaginasa/efectos adversos , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Consejo , Hipersensibilidad a las Drogas/etiología , Humanos , Oncólogos , Polietilenglicoles/efectos adversos , ARN Mensajero , SARS-CoV-2 , Vacunación/efectos adversos
14.
Front Cell Infect Microbiol ; 11: 781968, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1686454

RESUMEN

Background: The upper respiratory tract (URT) is the portal of entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and SARS-CoV-2 likely interacts with the URT microbiome. However, understanding of the associations between the URT microbiome and the severity of coronavirus disease 2019 (COVID-19) is still limited. Objective: Our primary objective was to identify URT microbiome signature/s that consistently changed over a spectrum of COVID-19 severity. Methods: Using data from 103 adult participants from two cities in the United States, we compared the bacterial load and the URT microbiome between five groups: 20 asymptomatic SARS-CoV-2-negative participants, 27 participants with mild COVID-19, 28 participants with moderate COVID-19, 15 hospitalized patients with severe COVID-19, and 13 hospitalized patients in the ICU with very severe COVID-19. Results: URT bacterial load, bacterial richness, and within-group microbiome composition dissimilarity consistently increased as COVID-19 severity increased, while the relative abundance of an amplicon sequence variant (ASV), Corynebacterium_unclassified.ASV0002, consistently decreased as COVID-19 severity increased. Conclusions: We observed that the URT microbiome composition significantly changed as COVID-19 severity increased. The URT microbiome could potentially predict which patients may be more likely to progress to severe disease or be modified to decrease severity. However, further research in additional longitudinal cohorts is needed to better understand how the microbiome affects COVID-19 severity.


Asunto(s)
COVID-19 , Microbiota , Adulto , Bacterias , Humanos , Sistema Respiratorio , SARS-CoV-2
15.
Cell ; 185(5): 847-859.e11, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1650711

RESUMEN

We address whether T cell responses induced by different vaccine platforms (mRNA-1273, BNT162b2, Ad26.COV2.S, and NVX-CoV2373) cross-recognize early SARS-CoV-2 variants. T cell responses to early variants were preserved across vaccine platforms. By contrast, significant overall decreases were observed for memory B cells and neutralizing antibodies. In subjects ∼6 months post-vaccination, 90% (CD4+) and 87% (CD8+) of memory T cell responses were preserved against variants on average by AIM assay, and 84% (CD4+) and 85% (CD8+) preserved against Omicron. Omicron RBD memory B cell recognition was substantially reduced to 42% compared with other variants. T cell epitope repertoire analysis revealed a median of 11 and 10 spike epitopes recognized by CD4+ and CD8+ T cells, with average preservation > 80% for Omicron. Functional preservation of the majority of T cell responses may play an important role as a second-level defense against diverse variants.


Asunto(s)
Vacunas contra la COVID-19/inmunología , Células B de Memoria/inmunología , Células T de Memoria/inmunología , SARS-CoV-2/inmunología , Ad26COVS1/administración & dosificación , Ad26COVS1/inmunología , Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , COVID-19/patología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Epítopos/inmunología , Epítopos de Linfocito T/inmunología , Humanos , Células B de Memoria/metabolismo , Células T de Memoria/metabolismo , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación
18.
Pathog Immun ; 6(2): 27-49, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1399715

RESUMEN

BACKGROUND: Genetic variations across the SARS-CoV-2 genome may influence transmissibility of the virus and the host's anti-viral immune response, in turn affecting the frequency of variants over time. In this study, we examined the adjacent amino acid polymorphisms in the nucleocapsid (R203K/G204R) of SARS-CoV-2 that arose on the background of the spike D614G change and describe how strains harboring these changes became dominant circulating strains globally. METHODS: Deep-sequencing data of SARS-CoV-2 from public databases and from clinical samples were analyzed to identify and map genetic variants and sub-genomic RNA transcripts across the genome. Results: Sequence analysis suggests that the 3 adjacent nucleotide changes that result in the K203/R204 variant have arisen by homologous recombination from the core sequence of the leader transcription-regulating sequence (TRS) rather than by stepwise mutation. The resulting sequence changes generate a novel sub-genomic RNA transcript for the C-terminal dimerization domain of nucleocapsid. Deep-sequencing data from 981 clinical samples confirmed the presence of the novel TRS-CS-dimerization domain RNA in individuals with the K203/R204 variant. Quantification of sub-genomic RNA indicates that viruses with the K203/R204 variant may also have increased expression of sub-genomic RNA from other open reading frames. CONCLUSIONS: The finding that homologous recombination from the TRS may have occurred since the introduction of SARS-CoV-2 in humans, resulting in both coding changes and novel sub-genomic RNA transcripts, suggests this as a mechanism for diversification and adaptation within its new host.

19.
JAMA Netw Open ; 4(8): e2122326, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1378910
20.
Clin Pharmacol Ther ; 110(6): 1537-1546, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1326762

RESUMEN

This study aimed to systematically investigate if any of the available drugs in the electronic health record (EHR) can be repurposed as potential treatment for coronavirus disease 2019 (COVID-19). Based on a retrospective cohort analysis of EHR data, drug-wide association studies (DrugWAS) were performed on 9,748 patients with COVID-19 at Vanderbilt University Medical Center (VUMC). For each drug study, multivariable logistic regression with overlap weighting using propensity score was applied to estimate the effect of drug exposure on COVID-19 disease outcomes. Patient exposure to a drug between 3-months prior to the pandemic and the COVID-19 diagnosis was chosen as the exposure of interest. All-cause of death was selected as the primary outcome. Hospitalization, admission to the intensive care unit, and need for mechanical ventilation were identified as secondary outcomes. Overall, 17 drugs were significantly associated with decreased COVID-19 severity. Previous exposure to two types of 13-valent pneumococcal conjugate vaccines, PCV13 (odds ratio (OR), 0.31, 95% confidence interval (CI), 0.12-0.81 and OR, 0.33, 95% CI, 0.15-0.73), diphtheria toxoid and tetanus toxoid vaccine (OR, 0.38, 95% CI, 0.15-0.93) were significantly associated with a decreased risk of death (primary outcome). Secondary analyses identified several other significant associations showing lower risk for COVID-19 outcomes: acellular pertussis vaccine, 23-valent pneumococcal polysaccharide vaccine (PPSV23), flaxseed extract, ethinyl estradiol, estradiol, turmeric extract, ubidecarenone, azelastine, pseudoephedrine, dextromethorphan, omega-3 fatty acids, fluticasone, and ibuprofen. In conclusion, this cohort study leveraged EHR data to identify a list of drugs that could be repurposed to improve COVID-19 outcomes. Further randomized clinical trials are needed to investigate the efficacy of the proposed drugs.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos/métodos , Vacunas Neumococicas/administración & dosificación , Vigilancia de Productos Comercializados/métodos , COVID-19/diagnóstico , COVID-19/prevención & control , Estudios de Cohortes , Humanos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA